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Problem Statement

We are interested in solving the thermal radiative transfer (TRT)
equation,

1

c

∂I

∂t
+ Ω̂ · ∇I + σI =

σacT 4

4π
, (1)

in which

I = I (~r , Ω̂, t)

σ = σ(T )

and the material temperature is governed by the following ODE,

ρCv
dT

dt
−
∫

4π
dΩ̂(σI − σacT 4

4π
) = 0. (2)
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Source Iteration

One could attempt to solve this problem using source iteration,

I n+1,k − I n

c∆t
+ Ω̂ · ∇I n+1,k + σI n+1,k =

σac
(
T n+1,k−1

)4

4π
,

ρCv
T n+1,k − T n

∆t
−
∫

4π
dΩ̂

(
σI n+1,k −

σac
(
T n+1,k

)4

4π

)
= 0.

This iteration is highly nonlinear and may converge very slowly.

The process of obtaining I n+1,k in Eq. 3 is called a transport
sweep and is a significant computational cost in any TRT
algorithm.
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Previous Work

Advanced algorithms have been designed in recent years which
utilize Moment-Based Acceleration:

1 D.A. Knoll, Kord Smith, and H. Park. Application of the
Jacobian-Free Newton-Krylov method to nonlinear acceleration of
transport source iteration in slab geometry, Nuclear Science and
Engineering, 167(2):122-132, February 2011.

2 H. Park, D. A. Knoll, R. M. Rauenzahn, C. K. Newman, J. D.
Densmore and A. B. Wollaber, An Efficient and Time Accurate,
Moment-Based Scale-Bridging Algorithm for Thermal Radiative
Transfer Problems, SIAM J. Sci. Comput. 35(5), S18-S41, 2013

3 H. Park, J. D. Densmore, A. B. Wollaber, D. A. Knoll, and R. M.
Rauenzahn, Monte Carlo Solution Methods in a Moment-Based
Scale-Bridging Algorithm for Thermal Radiative Transfer Problems:
Comparison with Fleck and Cummings, International Conference on
Mathematics and Computational Methods Applied to Nuclear
Science & Engineering, Sun Valley, ID, May 5 - 9, 2013.
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Moment-Based Acceleration

We construct a “low-order” system of moment equations to
accelerate the solution to the transport equation.
a
This yields the following advantages:

1 Algorithmic acceleration - For the 1-D Gray Marshak wave
problem (discussed later) this yields a 13× reduction in the
number of transport sweeps.

2 Tight multiphysics coupling via the low-order system -
multiple kinetic models can interact via the low-order system.

3 These algorithms map well to future computing architectures.
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Moment-Based Acceleration

We begin with the time-discretized transport equation,

I n+1 − I n

c∆t
+ Ω̂ · ∇I n+1 + σI n+1 =

σac
(
T n+1

)4

4π
, (3)

and compute the 0th and 1st angular moments:

E n+1 − E n

∆t
+∇ · F n+1 + cσE n+1 = σac

(
T n+1

)4
, (4)

F n+1 − F n

c∆t
+∇ · EcE n+1 + σF n+1 = 0, (5)
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Definitions

E n+1 − E n

∆t
+∇ · F n+1 + cσE n+1 = σac

(
T n+1

)4
, (6)

F n+1 − F n

c∆t
+∇ · EcE n+1 + σF n+1 = 0, (7)

In Eqs. 6 and 7 we have used several new terms:

E =
1

c

∫
4π

dΩ̂ I (8)

F =

∫
4π

dΩ̂ Ω̂I (9)

E =

∫
4π dΩ̂ Ω̂Ω̂I∫

4π dΩ̂ I
(10)
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Low-Order System

We now define our Low-Order (LO) system

E n+1 − E n

∆t
+∇ · F n+1 + cσE n+1 = σac

(
T n+1

)4
, (11)

F n+1 − F n

c∆t
+∇c

3
E n+1 + σF n+1 = γcE n+1, (12)

ρCv
T n+1 − T n

∆t
− cσE n+1 + σac

(
T n+1

)4
= 0 (13)

in which ∇EcE has been replaced by an NDA1-like approximation:

∇ · EcE = ∇c

3
E − γcE (14)

γ is referred to as the consistency term. γ accounts for transport
effects and HO-LO truncation error mismatch.

1See Application of the Jacobian-Free Newton-Krylov method to nonlinear
acceleration of transport source iteration in slab geometry by Knoll et al.
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Predictor-Corrector Algorithm

We compute E n+1, F n+1 and T n+1 using a predictor-corrector
time-stepping scheme:

1 Predict: Solve LO System for approximation to T n+1, T ∗

with γ and σ lagged from previous time-step.

2 Update opacity σ using T ∗.

3 Using T ∗, execute a single transport sweep for I n+1.

4 Given I n+1, compute E HO and F HO .

5 Compute new consistency term γ using E HO and F HO .

6 Correct: Solve LO System for E n+1, F n+1 and T n+1 using
current γ and σ.
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Predictor-Corrector Algorithm

In practice we find that the Predictor-Corrector algorithm is
sufficient for gray (single frequency group) problems.

At each timestep, we find that E HO ≈ E n+1. This is referred
to as “consistency.”
Using a Crank-Nicolson time-differencing scheme, this method
was shown to be second-order accurate in time.

For multifrequency problem, iteration between the transport
sweep and the corrector step is often required to ensure
consistency.
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Solutions to the Low-Order System
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Low-Order Solutions

The LO system needs to be solved (at least) twice per time-step:

E n+1 − E n

∆t
+∇ · F n+1 + cσE n+1 = σac

(
T n+1

)4
, (15)

F n+1 − F n

c∆t
+∇c

3
E n+1 + σF n+1 = γcE n+1, (16)

ρCv
T n+1 − T n

∆t
− cσE n+1 + σac

(
T n+1

)4
= 0 (17)

We could define a nonlinear equation, G(E ,F ,T ) = 0, which
corresponds to the solution of the low-order equation, however
this function can be very highly dimensional.

Instead, we will write a nonlinear equation, F(E ) = 0, which
has the same solution, in which F and T have been
nonlinearly eliminated.
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Nonlinear Elimination

Given E , we can compute F n+1 and T n+1 by solving the following
two equations for F n+1 and T n+1 respectively:

F n+1 − F n

c∆t
+∇c

3
E + σF n+1 = γcE , (18)

ρCv
T n+1 − T n

∆t
− cσE + σac

(
T n+1

)4
= 0 (19)

Then, we can write F as a function of E ,

F(E ) =
E − E n

∆t
+∇ · F n+1(E ) + cσE − σac

(
T n+1(E )

)4
.

F has fewer degrees of freedom, however the evaluation becomes
slightly more complicated.
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Solving F(E ) = 0

Traditionally, we have solved F(E ) = 0 via a Jacobian-Free
Newton-Krylov method.

GMRES is used to solve JδE = −F .

The Jacobian-vector product is approximated using a
finite-difference:

Jv ≈ F(E + εv)−F(E )

ε

In our experience, this works well when

1 solving a gray HO problem (i.e. I (~r , Ω̂, ν, t) = I (~r , Ω̂, t))

2 σ is fixed throughout the solution to the LO system.
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Trouble with JFNK

Suppose σ is a function of T n+1 inside the LO system. Now, we
must solve

ρCv
T n+1(E )− T n

∆t
− cσ

(
T n+1(E )

)
E + σ

(
T n+1(E )

)
ac
(
T n+1(E )

)4
= 0

1 Finite-difference Jacobian can be very inaccurate.

Choose the appropriate value for ε is challenging. E can vary
by more than 10 orders of magnitude throughout the domain.
σ is often a highly nonlinear function of T and at times may
be computed via table-lookup.

2 Analytic Jacobian-vector product becomes challenging when σ is a
function of E .

Possible solution: Pick a method which does not need a Jacobian.
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NKA as LO Solver

We will consider using Nonlinear Krylov Acceleration2, a variant of
Anderson Acceleration, as the LO Solver.

NKA is a nonlinear solver which

1 does not require an approximation to the Jacobian.

2 uses a history of residual evaluations to compute an update
for the current iterate.

2see Nonlinear Krylov Acceleration Applied to a Discrete Ordinates
Formulation of the k-Eigenvalue problem by Calef et al.
J. Willert - jaw@lanl.gov HOLO-TRT Advancements September 11, 2014 17 / 50



NKA as LO Solver

Nonlinear Krylov Acceleration

Input initial iterate x0, history length M
Set x1 = x0 −F(x0), n = 1.
while F(xn) > tolerance do

Compute NKA Update

~vn+1 =
n∑

i=n−M+1

z
(n)
i ~vi +

(
F(xn)−

n∑
i=n−M+1

z
(n)
i ~wi

)

in which

~vi = xi−1 − xi , ~wi = F(xi−1)−F(xi ), ~z (n) = arg min
y∈RM

∥∥∥∥∥F(xn)−
m∑

i=n−M+1

yi ~wi

∥∥∥∥∥
Set xn+1 = xn + ~vn+1.
Increment n = n + 1.

end while
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Test Problems

We will compare JFNK and NKA on two test problems:

1 Two Material Problem
2 Gray Marshak Wave

For each problem, we will report the total number of
low-order function evaluations.

We use a Trilinos multi-level method to invert the
preconditioner.

We use a LDG spatial discretization and an Sn angular
discretization.
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Two-Material Problem

Properties:

1 cm domain with 100 uniform spatial cells.

∆t = 10−10 s for 500 time-steps.

Problem is initially in equilibrium at 50 eV.

At t = 0 a 500 eV isotropic source is applied at the left
boundary.

Table : Material Properties for 1-D 2 Material Problem

Material 1 Material 2

x - range < 0.5 cm > 0.5 cm

σ (cm−1) 0.2 2000

ρ (g/cm3) 0.01 10.0

Cv (erg/eV-g) 1012 1012
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Two-Material Problem Results

Method LO Function Evals LO Function Evals per Solve

NKA(3) 5473 5.473

NKA(5) 5466 5.466

NKA(7) 5466 5.466

JFNK 15618 15.618

For the purposes of comparison, we were able to compute the
analytic Jacobian for this problem and use a direct inversion to
compute the Newton step. In this case, 2944 function evaluations
were required.
a
Results from 2014 Copper Mountain Conference on Iterative
Methods.

J. Willert - jaw@lanl.gov HOLO-TRT Advancements September 11, 2014 21 / 50



Gray Marshak Wave Problem

Properties:

2.0 cm domain with 40 uniform spatial cells

∆t ∈ [10−11, 10−10] for 515 time-steps.

ρ = 1.0 g/cm3

Cv = 1.3784× 1011 erg/eV − g .

Problem is initially in equilibrium at 0.025 eV.

At t = 0, a 150 eV isotropic source is applied to the left
boundary.

The opacity is given by

σ(T ) =
106ρ

T 3
.
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Gray Marshak Wave Problem Problem Results

Method LO Function Evals LO Function Evals per Solve

NKA(3) 6599 6.407

NKA(5) 6558 6.367

NKA(7) 6558 6.367

JFNK 19019 18.465

For the purposes of comparison, we were able to compute the
analytic Jacobian for this problem and use a direct inversion to
compute the Newton step. In this case, 3880 function evaluations
were required.
a
Results from 2014 Copper Mountain Conference on Iterative
Methods.
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Interpretation

1 These results confirm findings from a previous MATLAB
implementation of the algorithm.

2 We expected NKA to be competitive with or outperform
Newton’s method for several reasons:

JFNK requires potentially inaccurate finite-difference
Jacobian-vector product evaluations.
NKA relies only on function evaluations.
In our experience, NKA performs very well when the initial
iterate is very near the solution, which is generally satisfied by
our predictor-corrector algorithm.

3 We intend to further investigate the robustness of NKA by
incorporating a line search.
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Residual Monte Carlo
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Predictor-Corrector Algorithm

We compute E n+1, F n+1 and T n+1 using a predictor-corrector
time-stepping scheme:

1 Predict: Solve LO System for approximation to T n+1, T ∗

with γ and σ lagged from previous time-step.

2 Update opacity σ using T ∗.

3 Using T ∗, execute a single transport sweep for I n+1.

4 Given I n+1, compute E HO and F HO .

5 Compute new consistency term γ using E HO and F HO .

6 Correct: Solve LO System for E n+1, F n+1 and T n+1 using
current γ and σ.
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Motivation

We often like to compute the transport sweep via Monte Carlo
simulation, however,

The stochastic noise from a Monte Carlo (MC) transport
sweep can provide challenges for accuracy and may negatively
impact low-order solver.

Global solutions are necessary, however MC does not excel
with this.

Advanced high-order (HO) solvers can be applied in the
HO-LO setting.
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Theory

The stochastic noise in a MC simulation is proportional to the
magnitude of the source term.

Solution to high-order system can often be well-approximated.

We create a residual system of equations which yields smaller
source terms and thus produces less stochastic noise.

J. Willert - jaw@lanl.gov HOLO-TRT Advancements September 11, 2014 28 / 50



History of RMC

“Residual” Monte Carlo algorithms have been proposed previously
in several forms. What we have accomplished differs from previous
work in many ways -

1 The approximate time-step solution, I +, in our formulation
can be chosen to accomplish desired objectives - e.g. remove
volumetric source term.

2 Our formulation is greatly simplified by the HO-LO algorithm
- RMC needs to solve a purely absorbing problem at each
time-step.

3 Exponentially Convergent Monte Carlo (ECMC) (see Peterson,
Morel, and Ragusa, 2013) requires mesh-adaptation in both
space and angle. Our algorithm operates on a single mesh.
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Current State of Methods

A gray, time-discrete 1-D RMC method has been implemented
and tested inside the prototype code.

An article describing these results has been published in JCP:
a
Jeffrey Willert and H. Park, “Residual Monte Carlo High-Order Solver for
Moment-Based Accelerated Thermal Radiative Transfer Equations,”
Journal of Computational Physics, 276, pp. 405-421 2014.
a

A gray, time-continuous 1-D RMC method has been
implemented using flat cell sources.
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Flat Source, Backward-Euler Time Discretization

We wish to solve

I n+1 − I n

c∆t
+ µ

∂I n+1

∂x
+ σn+1I n+1 =

σn+1ac
(
T n+1

)4

2
. (20)

Given some approximation I + ≈ I n+1, we define

δn+1 = I n+1 − I +. (21)

Now we solve

δn+1

c∆t
+ µ

∂δn+1

∂x
+ σn+1δn+1 =

σn+1ac
(
T n+1

)4

2
− I + − I n

c∆t
− µ∂I +

∂x
− σn+1I + (22)

for the residual correction term, δn+1.
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Residual Source Term

Old source term:

SSMC =
σn+1ac

(
T n+1

)4

2
+

I n

c∆t
(23)

New source term:

SRMC =
σn+1ac

(
T n+1

)4

2
− I + − I n

c∆t
−µ∂I +

∂x
−σn+1I +. (24)

Red terms yield a volumetric (x − µ space) source term. Blue term
yields a face-source (fixed points in x-space) for discontinuous I +.
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Choosing I+

Mathematically speaking - any choice of I + will allow for the
correct solution to the HO problem given enough Monte Carlo
particles.

A good choice of I + allows user to gain acceptable level of
MC error with relatively few particles.

A bad choice of I + may require more MC particles than SMC.

Key realization: We can zero out the volumetric source term with
the choice of I +, i.e.

0 =
σn+1ac

(
T n+1

)4

2
− I + − I n

c∆t
− σn+1I + (25)

I + =

[
σn+1ac

(
T n+1

)4

2
+

I n

c∆t

]
/

(
1

c∆t
+ σn+1

)
(26)

This allows us to sample a lower-dimensional space, in turn
yielding less stochastic noise.
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RMC HO Solver

1 Compute I +.

2 Build residual source term.

3 Simulate particle histories (each of which begins on a cell
face).

4 Tally δn+1 at cell centers and cell faces.

5 Recover I n+1, E n+1, and F n+1.
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Computational Results - Two-Material Problem
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Figure: Comparison of SMC and RMC at ∆x = 0.025 with 128
angular bins.
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Computational Results - Two-Material Problem

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

x−position

E
r
r
o
r

               Residual Monte Carlo                

 

 

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

10

20

30

40

x−position

E
r
r
o
r

     Standard Monte Carlo              

 

 

500 Particles
5000 Particles
50000 Particles

500 Particles
5000 Particles
50000 Particles

RMC(500) demonstrates nearly zero stochastic noise, whereas
SMC(50000) still exhibits significant errors.
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Computational Results - Two-Material Problem

Table: Relative efficiency for Two-Material Problem using 40
Spatial Cells

Method Particles 64 Bins 128 Bins

SMC 500 1 1

RMC 500 4917.8 6468.5

SMC 5000 1.734 0.498

RMC 5000 2450.4 4274.5

SMC 50000 0.462 0.313

RMC 50000 435.0 969.3

Relative efficiency measures (REMs) have been normalized so that
SMC(500) has a REM = 1.
blank
RMC(500) is roughly 20,000x more efficient than SMC(50,000).
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Conclusions

1 The HOLO algorithm allows for a simple implementation of a
residual Monte Carlo algorithm.

2 Careful choice of the approximating distribution, I +, is
required in order to minimize noise.

3 Stochastic noise can be minimized by placing particles in
lower-dimensional spaces. For example, particles born on a
cell-face generally contribute less noise than those born in the
cell volume.

4 For time-discrete RMC, we have demonstrated relative
efficiency measures varying between 500 and 12,000.

5 RMC incurs zero error in regions of the domain which remain
in equilibrium, i.e. have zero spatial derivative.
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Neutronics Applications
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k-Eigenvalue problem

We are interested in solving the multi-group k-eigenvalue problem
given by

Ω̂ · ∇ψg (Ω̂,~r) + Σt,gψg (Ω̂,~r) =

1

4π

 G∑
g ′=1

Σg ′→g
s φg ′(~r) +

χg

keff

G∑
g ′=1

νΣf ,g ′φg ′(~r)


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k-Eigenvalue problem

As before, let us compute the zeroth angular moment of the
transport equation

∇ · ~Jg + (Σt,g − Σg→g
s )φg =

∑
g ′ 6=g

Σg ′→g
s φg ′ +

χg

keff

G∑
g ′=1

νΣf ,g ′φg ′ ,

and then write ~J as

~Jg = − 1

3Σt,g
∇φg + D̂gφg .

This yields the following low-order system

∇ ·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg =

∑
g ′ 6=g

Σg ′→g
s φg ′ +

χg

keff

G∑
g ′=1

νΣf ,g ′φg ′ .

Note: D̂ is the same as γ in the TRT HO-LO algorithm.
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NDA-NCA

Compute initial iterate Φ(0), initial eigenvalue approximation k0. Set iteration
counter m = 0.
while |km − km−1| > τ do

Update counter, m = m + 1.
Execute transport sweep and compute new consistency term

Ψ(m) =
1

4π
L−1

(
S +

1

km−1
F
)

Φ(m−1), (27)

ΦHO =

∫
Ψ(m)dΩ̂, (28)

~JHO =

∫
Ω̂Ψ(m)dΩ̂, (29)

D̂(m) =
~JHO + 1

3Σt
∇ΦHO

ΦHO
. (30)

Solve the LO eigenvalue problem for Φ(m) and km

(
D(m) − SU − SL

)
Φ(m) =

1

k(m)
FΦ(m). (31)

end while

NOTE: NDA-NCA achieves the same eigenvalue and eigenvector as a purely
high-order solver. See references [1], [2], and [7].
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Deterministic HO-LO Results3 - 2D C5G7-MOX Problem

Method Sweeps Time (s) HO Time (s) LO Time (s) Factor
NDA-NCA-JFNK 6 535.48 214.92 320.56 1.00
NDA-NCA-NKA 6 635.52 214.71 420.81 1.19

NDA-PI 13 2599.61 469.37 2130.24 4.85
HO-JFNK(.001,30) 179 6512.52 6512.52 — 12.16
HO-JFNK(.01,150) 154 5620.18 5620.18 — 10.50

HO-NKA(15) 121 4500.79 4500.79 — 8.41
PI(1) 1454 56387.71 56387.71 — 105.30

PI(10) 1970 72851.56 72851.56 — 136.05

Table key:

PI(max) - Power Iteration (maximum number of inner iterations)

HO-X - Nonlinear solver X is applied directly to high-order problem

NDA-PI - Nonlinear Diffusion Accelerated calculation, low-order problem solved
with power iterations

NDA-NCA-X - Nonlinear Diffusion Accelerated calculation, low-order problem
solved with nonlinear solver X

3see A Comparison of Acceleration Methods for Solving the Neutron
Transport k-Eigenvalue Problem by Willert, Park and Knoll (JCP 2014)
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Hybrid HO-LO Method

NDA-NCA has been adapted to use Monte Carlo simulation to
replace the Sn transport sweep.4

To solve the 2-D, 2-group LRA-BWR problem required
roughly 1011 particles to get 5 digits in the eigenvalue.

Hybrid NDA-NCA is more efficient than analog Monte Carlo,
but not by much.

Can RMC help here?

4see A Hybrid Deterministic/Monte Carlo Method for Solving the
k-Eigenvalue Problem with a Comparison to Analog Monte Carlo Solutions by
Willert, Kelley, Knoll and Park (Journal of Computational and Theoretical
Transport)
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Neutronics RMC Results
RMC − Group 1 Error
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A similar accuracy solution is achieved by RMC for a factor of
roughly 700 fewer particles.
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Neutronics Conclusions

1 NDA-NCA has been shown to accelerate the solution to
isotropic k-eigenvalue problems by a factor of over 100
compared to Power Iteration and a factor of over 10 for
nonlinearly accelerated calculations.

2 Hybrid NDA-NCA can be accelerated by replacing a standard
Monte Carlo simulation with “Residual Monte Carlo.”

3 NDA-NCA has recently been adapted to accelerate anisotropic
k-eigenvalue calculations.

(Subject of talk at ANS Reactor Protection and Shielding Division
Conference in Knoxville, TN at 10:25 AM on 9/18)
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Conclusions

1 We can now choose between JFNK and NKA for our low-order
solver in both the TRT and neutronics applications.

For TRT, we see a 2 - 3× reduction in low-order function
evaluations when NKA is used.
No significant difference was demonstrated between JFNK and
NKA as the low-order solver in the neutronics application. The
most significant improvement is seen by implementing a
high-order/low-order accelerator.

2 Replacing Monte Carlo transport sweeps by Residual Monte
Carlo can provide a dramatic gain in efficiency.

1 For 1-D TRT, we see a factor of 500-12,000 gain in efficiency.
2 For 2-D neutronics, a factor of 700 gain in efficiency has been

demonstrated.
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Future Work

1 Optimize the Residual Monte Carlo algorithm for the
neutronics problem.

2 Implement RMC in two spatial dimensions for the TRT
problem.

3 Characterize the robustness of both JFNK and NKA for the
TRT low-order problem when Monte Carlo returns noisy
consistency terms.
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Questions?
a

E-mail: jaw@lanl.gov
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